# Low temperature PLD-growth of ZnO nanowires

Alexander Shkurmanov Chris Sturm Helena Franke Marius Grundmann

# UNIVERSITÄT LEIPZIG



Semiconductor Physics Group







Semiconductor Physics Group Motivation





ZnO nanowires on pure a-plane sapphire





#### Semiconductor Physics Group

# Motivation





N.Van, et al: High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage, Nanoscale 6, 5479(2014)



ZnO nanowires on pure a-plane sapphire



# Motivation





ZnO nanowires on pure a-plane sapphire N.Van, et al: High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage, Nanoscale 6, 5479(2014)

> n-type NW

V.

SiQ.

P++-Si

Devices based on the CMOS-structures

2

Vin





Semiconductor Physics Group

# Motivation



### **Devices based on the CMOS-structures**

• Pressure distribution



C.Pan, et al: High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nature Photonics 7, 752(2013)

### UNIVERSITÄT LEIPZIG



Semiconductor Physics Group

# Motivation

# **Devices based on the CMOS-structures**

• Pressure distribution



C.Pan, et al: High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nature Photonics 7, 752(2013) Gas sensor



Christopher R. Field, et al: Vapor Detection Performance of Veritcally Aligned, Ordered Arrays of Silicon Nanowies with a Porous Electrode."*Analytical Chemistry* 83, 4724 (2011).

### UNIVERSITÄT LEIPZIG



Semiconductor Physics Group

# Motivation

# **Devices based on the CMOS-structures**

•

Pressure distribution





Gas sensor

Christopher R. Field, et al: Vapor Detection Performance of Veritcally Aligned, Ordered Arrays of Silicon Nanowies with a Porous Electrode."*Analytical Chemistry* 83, 4724 (2011).

Mixed-signal neuromorphic networks



C.Pan, et al: High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nature Photonics 7, 752(2013)

K. Likharev : Simplifying hybrid semiconductor-nanodevice circuits, Sci. Adv. Mater. 3, 322 (2011)





в

# Motivation

# **Devices based on the CMOS-structures**

Pressure distribution

Pressure/force

Gas sensor

Is it possible to use the low growth temperature for obtaining high quality nanowires?



C.Pan, et al: High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nature Photonics 7, 752(2013) Performance of Veritcally Aligned, Ordered Arrays of Silicon Nanowies with a Porous Electrode."*Analytical Chemistry* 83, 4724 (2011).

• Mixed-signal neuromorphic networks



K. Likharev : Simplifying hybrid semiconductor-nanodevice circuits, Sci. Adv. Mater. 3, 322 (2011)



Helena Franke: PLD-grown ZnO-based Microcavities for Bose–Einstein Condensation of Exciton-Polaritons, Dissertation, University of Leipzig, 2012



Dissertation, University of Leipzig, 2012



Andreas Rahm: Growth and Characterization of ZnO-based Nanostructures, Dissertation, University of Leipzig, 2007 main parameters:

- temperature (900°C)
- pressure (100-200mbar)
- # of pulses
- composition of the transport gas (Ar, O<sub>2</sub>, or mix)
- distance between target and substrate (1-5cm)

### UNIVERSITÄT LEIPZIG



Semiconductor Physics Group



Andreas Rahm: Growth and Characterization of ZnO-based Nanostructures, Dissertation, University of Leipzig, 2007



### main parameters:

- temperature (900°C)
- pressure (100-200mbar)

PLD for nanowires

- # of pulses
- composition of the transport gas (Ar, O<sub>2</sub>, or mix)
- distance between target and substrate (1-5cm)





#### UNIVERSITÄT LEIPZIG



Semiconductor Physics Group

# Nanowires grown by PLD

T≈900°C



ZnO nanowires on pure a-plane sapphire



ZnO nanowires on a-plane sapphire with 200 nm ZnO seed layer



Andreas Rahm: Growth and Characterization of ZnO-based Nanostructures, Dissertation, University of Leipzig, 2007









ZnO:Al (wt-3%) sapphire A



















 $\begin{bmatrix} 10 \end{bmatrix}$ 







 $\left(\begin{array}{c} 11 \end{array}\right)$ 





 $\left(\begin{array}{c} 11 \end{array}\right)$ 









### UNIVERSITÄT LEIPZIG



Semiconductor Physics Group

# Temperature dependence









Semiconductor Physics Group

# Agglomerations



![](_page_34_Picture_6.jpeg)

### UNIVERSITÄT LEIPZIG

![](_page_35_Picture_2.jpeg)

Semiconductor Physics Group

# Agglomerations

![](_page_35_Picture_5.jpeg)

Particles

![](_page_35_Picture_7.jpeg)

![](_page_35_Picture_8.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

![](_page_38_Picture_3.jpeg)

 Content of Al in the ZnO nucleation film has an influence on the growth process

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_1.jpeg)

![](_page_39_Picture_3.jpeg)

- Content of Al in the ZnO nucleation film has an influence on the growth process
- Growth temperature for NW can be reduced down to 400°C

![](_page_40_Picture_0.jpeg)

![](_page_40_Picture_1.jpeg)

![](_page_40_Picture_3.jpeg)

- Content of Al in the ZnO nucleation film has an influence on the growth process
- Growth temperature for NW can be reduced down to 400°C •

•  $T \downarrow = \begin{cases} \text{aspect ratio } \downarrow \end{cases}$ 

![](_page_41_Picture_0.jpeg)

![](_page_41_Picture_1.jpeg)

![](_page_41_Picture_3.jpeg)

- Content of Al in the ZnO nucleation film has an influence on the growth process
- Growth temperature for NW can be reduced down to 400°C

•  $T \downarrow = \begin{cases} \text{aspect ratio } \downarrow \\ \text{agglomerations } \uparrow \end{cases}$ 

![](_page_41_Picture_7.jpeg)

### UNIVERSITÄT LEIPZIG

![](_page_42_Picture_2.jpeg)

# Thanks to:

- Dipl.-Ing. H. Hochmuth
- Dipl.-Phys. J. Lenzner
- G. Ramm
- Semiconductor Physics Group

![](_page_42_Picture_8.jpeg)

![](_page_42_Picture_9.jpeg)

![](_page_42_Picture_10.jpeg)

![](_page_42_Picture_11.jpeg)

### EU Project No. 611019

![](_page_42_Picture_13.jpeg)

# Thank you for attention!