

Unit-Cell Design of a Force Sensor Based on Vertical Piezoelectric Nanowires

Edgar LEÓN PÉREZ¹, Mireille MOUIS², Sven SALOMON¹, Gustavo ARDILA², Emmanuelle PAULIAC-VAUJOUR¹.

¹ CEA-Leti, Systems Department (France) ² IMEP-LAHC (France)

NGPT-2014

MINATEC CAMPUS

Summary

Part I

	Introduction	P.03
_		

Starting Point
P.05

Part II

Static FEM simulations of a pixel	P.07
Case 1: ZnO layer + contacted NW	P.09
Case 2: Si layer + ZnO layer + contacted NW	P.11
Issues inherent to fabrication	P.12

Conclusion

PART I: INTRODUCTION

Large-scale integration of nano-objects

Piezoelectric response impacted by nanowires characteristics (Hinchet et al., IEDM 2012)

3D reconstruction of the force / deformation applied on the sensor via strain-stress field mapping

PART I: STARTING POINT

Starting Point

Static FEM simulation NW Dimensions: R=25nm, L=600nm Applied force: Fy=80 nN ZnO **Compressive-side Tensile-side** (+V) (-V) Max: 0.405 0.4 -0.3 -0.2Potential(V) 0.1 -0 -0. -0.2 -0.3Min: -0.398 **Bottom reverse region** V_{max}≈300 mV (Y. Gao et al., Nano Letters 2007)

leti

- Enables electrical contact positioning
- Missing surrounding environment of NW (pixel)

PART II: STATIC FEM SIMULATIONS OF A PIXEL

FEM approach for sensing-device design

Multi-physics static finite element simulations: exploit the piezopotential reverse region for contacting

The piezopotential inversion region hosts the highest values in our configurations

FEM approach for device design: 1st case

Boundary Conditions:

leti

FEM approach for device design 1st case

Collection efficiency = $\Delta V_c / V_{max}$

leti

Parametric study

The location of the piezopotential maximum depends on the ZnO thickness Thinner seed layer is preferred

FEM approach for device design 2nd case

Parametric study

Parameter: ZnO layer thickness (ezno)

Collection efficiency = $\Delta V_c / V_{max}$

Better potential outputs with thinner ZnO layers

Ţ

Realistic cases: issues inherent to fabrication

Possible misalignment of contacts and NW

Inherent to device fabrication (contact deposition and NW growth) which introduce strong variability.

Investigation of technologically realistic parameters

Significant drop of ΔV_c when physical contact is lost

But stabilization of ΔV_c for $\delta > 5$ nm.

leti

Investigation of technologically realistic parameters

Influence of the electrode height (h_{contact})

Investigation of technologically realistic parameters

CONCLUSIONS

NGPT 2014 | E. Leon Perez (CEA) | 9 JUNE 2014 | PAGE 17

leti

Microfabrication can be anticipated by studying the influence of different parameters that are inherent to device fabrication

- Although the piezopotential values drops dramatically when δ > 0nm, it is still exploitable
- Thinner seed layers are preferred

Conclusions

- Piezopotential spreads continuously from the inversion region into the seed layer and (to a smaller extend) into the electrodes
- The inversion region hosts the highest values of piezopotential, this is where the contacts should be placed

FEM simulations provide valuable insight for device design:

LABORATOIRE D'ÉLECTRONIQUE ET DE TECHNOLOGIES DE L'INFORMATION

CEA-Leti MINATEC Campus, 17 rue des Martyrs 38054 GRENOBLE Cedex 9 Tel. +33 4 38 78 36 25

www.leti.fr

Thank you for your attention

Funding: CEA, PIEZOMAT EU project (7th Framework Programme)

